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Preface

Probability and linear mathematics, the core of the traditional course in finite
mathematics, provide some of the most basic and widely used mathematical
tools in business, and the social and life sciences. These core topics and their
applications are presented in Parts I and II of this text. Throughout the book
there is an emphasis on ideas and techniques useful in constructing models and
solving problems.

You learn to solve problems by working problems. Therefore, we include
many exercises for you to use in developing and testing your problem-solving
ability. Some are very easy, most are similar in difficulty to the discussions
and the examples explained in the text, and a few are fairly tough. To
solve problems, you must know where to start and how to proceed. We use
discussions and examples to introduce and illustrate ideas and techniques to
aid you in acquiring these skills. Some of the examples are straightforward
computation, others show you how to solve problems by combining several
ideas and techniques, and yet others illustrate the important method of breaking
a problem into simpler problems, solving them one at a time, and then putting
the results together to solve the original problem. Since we cannot provide
examples of every type of problem and every setting you may encounter, we
identify fundamental principles that should be helpful in unfamiliar situations.

Chapters | through 4 present basic concepts in probability, and it is common
for this material to constitute about one-half of a one-semester finite math-
ematics course. The other half of such a course is usually devoted to linear
equations, matrices, and linear programming, and these topics are covered in

vii
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sets, Partitions, and Tree Diagrams

1.0 THE SETTING AND OVERVIEW

We develop a common notation and terminology for sets and set operations
which will be helpful in explaining and understanding probability. The discus-
sion begins with sets, ways of combining sets, and a connection between set
operations and certain logical operations. A useful technique of representing
sets with diagrams is developed. We introduce a special type of set needed in
our work on probability, the set of outcomes of an experiment. We develop
three key methods for counting the elements in particular kinds of sets. These
methods are partitions, tree diagrams, and the multiplication principle, concepts
that will be applied and extended in Chapters 2, 3, and 4.

1.1 REVIEW OF SETS AND SET OPERATIONS

The students in a finite mathematics class form a set. So do the workers in an
office, the books on a shelf, and the courses taken by a student this semester.
A set is a collection whose members are specified by a list or a rule. The items
in the collection are the elements of the set. To use a rule to specify a set, the
rule must make it possible to determine precisely which things are in the set
and which are not. When a set is specified by a list, the usual practice is to list
the elements, each one exactly once, between a pair of braces, thus, the set S
of names of states beginning with the letter A may be denoted by

S = {Alabama, Alaska, Arizona, Arkansas}
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When a rule is used to specify a set, the usual practice is to write the rule
after a symbol denoting a general element of the set followed by a colon and
to include all the information in braces. For instance, to specify the set S with
a rule, we can write

S = {x: x is the name of a state beginning with the letter A}

In this expression the symbols ““S = {x: ...}’" are read ‘“S is the set of all x
such that. . ..”

Whether a list or a rule is used to specify a set, it is important to remember
that either something belongs to a set or it does not. It cannot partly belong to
a set, and it cannot belong to a set several times.

Consider the set / = {2,3,4,5,6,7,8,9,10, 11, 12}. Here we have specified
the set by listing all elements in the set. This can also be described in more
than one way by using a rule. Two such ways are the following:

[ ={n : nisa positive integer that is not less than 2 or greater than 12}
I = {s : s is the sum of the two numbers on top when two standard six-sided
dice are rolled} [ |

In some cases a list of the elements provides the simplest and most useful
representation of a set. In other cases a rule is preferable. For sets with large
numbers of elements, the use of a rule is often the only practical way to define
the set.

To indicate that x is an element of a set X', we write x € X. To indicate that
x is not an element of X, we write x ¢ X. Thus in Example 1.1 we have 8 € /,
but 15 ¢ 1.

A set A is a subset of a set B, written A C B, if every element in A is also in B.
If AC B and B C A, then A and B have exactly the same elements, and we say
that A and B are equal. We write A = B.

To illustrate the notation, let ' = {4, 8, 12} and G = {1, 4, 6}, and let / be
the set of Example 1.1. Then /7 C [ since every element of / is also an element
of 1. The set (G 1s not a subset of / since not all elements of G are in /. Indeed,
41,6 €l,butl ¢ . Insuchacaseitissometimesconvenient to write G Z 1.

It is often helpful to describe sets in terms of other sets. For instance, if

A=1{2,4,8,12}
B =1{2,6,10,12, 14}
and C=1{2,4,6,8, 10, 12, 14}

then C is the set of all elements which are in 4 or in B or in both. Thus, we can
view C as the set which results from combining 4 and B in a specific way. The
operation which combines sets in this way is known as the union.
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Let A and B be sets. The set A U B, called the union of A and B, consists of
all elements which are in A or in B or in both.

AUB ={x:x € Aorx e B}

Note that in expressions such as ““x € 4 orx € B’” the “‘or’” is inclusive; that is,
the condition is fulfilled if at least one of x € 4 orx € B holds. This includes the
possibility that both hold.

To continue, let

A=1{2,4,8,12) B={2,610,12,19} J=1{2, 12}

Then J is the set of elements which are in both 4 and B. The operation which
combines sets in this way is known as the intersection.

Let Aand B be sets. The set A N B, called the intersection of A and B, consists
of all elements which are in both A and B.

ANB={x: xe Aand x € B}

Example 1.2 Letsets S, £, C, and M be defined as follows:

S = {CT, MA, MD, CA, CO, MI, MN}
E = {CT, MA, MD}

C = {CA, CO, CT}

M = {MA, MD, MI, MN}

The elements of these sets are actually the standard abbreviations for names of
states. The meaning is unimportant, however, and the elements can be viewed
simply as symbols. Since each element of £ is also an element of S, set £ is a
subset of § and we write £ C S. Likewise, C C S and M C S. However, since
CT € Ebut CT ¢ M, set E is not a subset of M, written £ Z M. Sets £ and C
have only the element CT in common, but sets £ and M share the elements
MA and MD. Therefore,

ENC = {CT} and ENM = {MA, MD}
Combining pairs of sets with the union operation, we have

EUC = {CA, CO, CT, MA, MD}
EUM = {CT, MA, MD, MI, MN}
and CUM = {CT, MA, MD, CA, CO, MI, MN} = § [ ]
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Note that the element CT which appears in both £ and C appears only once
in £ U C. As we noted earlier, when a set is specified by a list, each element in
the set must appear in the list exactly once. Also, if a set is specified by a list,
then the order in which the elements appear in the list does not matter. Thus
{CT, MA, MD} is the same as {MA, MD, CT} or {MD, CT, MA}.

In Example 1.2 the sets C = {CA, CO, CT} and M = {MA, MD, MI, MN}
have no elements in common. That is, the set C N M has no elements. Likewise,
the set

S = {x: x is the name of a state beginning with the letter B}

has no elements.

The set which contains no elements is known as the empty set, and it is
denoted by #. By convention the empty set is considered to be a subset of
every set.

Since the empty set has no elements, we see that for every set 4,

AN =0 and AU = A

Two sets A and B are disjointif AN B = .

The sets C = {CA, CO, CT} and M = {MA, MD, MI, MN} are disjoint since
CNM=49.

The definitions of union and intersection were formulated for two sets. With
the use of parentheses they can be used in expressions which involve more
than two sets. For instance, if we have three sets 4, B, and C, then the set
of all elements which are in 4 and in B and in C can be written as either
ANBNC) or (AN B)NC. In this case the parentheses do not matter, and
thus we can write 4 N BN C for short. Likewise the set of all elements in A
or in B or in C (or in more than one of these sets) can be unambiguously
denoted by 4 U B U C. However, when an expression involves both union and
intersection operations, it is generally necessary to use parentheses in writing
the expression. The operations within the parentheses are to be carried out first.

Example 1.3 Letd ={a,b,c}, B = {a,c, e}, and C = {a, d}. Then

ANBNC = {a)
AUBUC ={a, b,c,d, e}
ANBYUC ={a,c}U{a,d} = {a,c,d}
ANBUC) ={a,b,c}N{a,c,d, e} ={a,c}
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Here we have (4N B) U C # A N (B U C). The parentheses are clearly crucial
to the meaning of the expressions. [ |

We have defined the intersection of two sets 4 and B (the set of elements
which are in 4 and B) and the union of 4 and B (the set of elements which are
in A4 or B or both). Thus we have operations on sets which associate naturally
with ““and’” and “‘or.”” We turn next to an operation on sets which is the natural
associate of the word “‘not.”’

A set U is said to be a universal set for a problem if all sets being considered
in the problem are subsets of U. Given a universal set U, the complement
of a subset A of U is the set of all elements in U which are not in A. The
complement of A is written A’.

A = {x,x € Uand x ¢ A}

Notice that if 4 and B are subsets of U, then the set of elements in 4 which
are not in B can be written as 4 N B’. Such sets arise frequently in applications.

Let U = {CA, CO, CT,IL,IN}, X = {CA, CT,IL}, ¥ = {CO, CT, IN}, and
7 = {CO, IN}. Then

X' ={CO,IN}=Z7 Y ={CA/IL} 7 ={CA,CT,IL} =X
YNZ ={CT} XNZ={CACT,IL}=X ZNY =0 m

In addition to taking unions, intersections, and complements, there are other
useful ways of building new sets from given ones. For example, suppose
that a sociologist has enough money to conduct one survey. The survey can
be conducted either by mail (M) or by phone (P) in one of three cities:
Atlanta (4), Boston (B), or Cincinnati (C). Thus the choice for the sociologist
can be viewed as selecting a method (M or P) and a city (4, B, or C). Each
possible survey can be denoted by an ordered pair of elements, one from the
set {M, P} and one from the set {4, B, C}. Thus selecting a survey is clearly
the same as selecting an element from the set

{(M, 4), (M, B), (M, C), (P, 4), (P,B), (P,C)}

The cartesian product of sets A and B, denoted by A x B, is the set of all
ordered pairs (a, b) where a€ Aand b € B.

Ax B={(a,b):a €A, b e B}
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Let
A=l{a,c,e} B={b,d,e} C=1{b,d}
Then

A x C={(a,b), (a,d), (c, b)), (c,d)), (e b), (e, d))}
B x C = {(b,b), (b,d),(d, b)), (d d), (e b)), (ed))}
CXC={(b,b),(b, d)s(dvb)a (ds d)} | |

Since 4 x C in Example 1.5 is a set, the order of the elements within the
braces is not important. In particular, we could also write

A x C={(a,b), (c,b), (e b)), (ad), (cd)), (e d))}

The order of the symbols within the parentheses is important: The element
(x, y) is different from (y, x) for x different from y. Our next example illustrates
this.

A division of a soccer league consists of four teams: the Argots (4), Bots (B),
Cams (C), and Drams (D). Each game can be represented as an ordered pair
of teams in which the first entry denotes the home team. With this notation
the set of all possible games is a subset of the cartesian product of the set
L = {4, B, C, D} with itself, L x L. Note that the cartesian product L x L
contains elements such as (4, A), which are not legitimate games. In fact, the
set of all possible games is

G ={,B),(4,0),(4,D),(B,4), (B, C), (B, D), (C,4), (C, B), (C, D),
(D, 4), (D, B), (D, C)}

and the set of all games involving the Argots, Bots, and Cams is
H={(4,B), (4, C), (B, 4), (B, C), (C,A4),(C,B)} =

Example 1.6 illustrates the importance of order in the construction of an
ordered pair. For instance, the game between 4 and B with 4 as the home team
is denoted by (4, B), while (B, A) denotes the game between the same teams
with B as the home team. Thus, the ordered pair (4, B) is not the same as the
ordered pair (B, 4). However, as we noted earlier, the order of elements in
the list specifying the set is unimportant, and set // can also be represented,
e.g., as

H = {(4,B), (B,4), (4, C), (C,4), (B, C), (C, B)}
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Exercises for Section 1.1

1.

10.

1.

12.

Let R ={a,b},S ={a,c, [}, and T = {a, b, ¢, d, e}. Decide whether each of the
following assertions is correct.
(a) SCT (b) RCS (¢c) beRNT

. With R, S, and T defined as in Exercise 1, decide whether each of the following

assertions is correct.

(a) RCT by (RUSCT (¢c) ceSNT

With R, S, and T defined as in Exercise 1, find (RUS) N T.

Let U={1,2,t,u,v,x,y,z}, E=1{2ty}, F={1,2,uy,z} and
G={1,2,u,y}.Find (E U F) N G

. Let 4 = {p, g, r}. Find all nonempty subsets B and C of 4 such that BNC = ¢

and BU C = A.

Let U=1{1,2,3,4,5,6,7} be a universal set with subsets 4 = {1, 3,5} and
B = {1, 5}. List the elements in each of the following sets.
(a) A’ (b) ANB (¢) AUB (d) (AUBY

. The sets M, A, B, and C are defined as follows:

M = {Minnesota, Michigan, Montana, Massachusetts}
A = {Alabama, Arkansas, Michigan}

B = {Montana, Michigan}

C = {Alabama, Arkansas}

Decide which of the following subset relationships are correct.
(a) BCM (by BCC (¢ CC4
(dy CCB (e CCM (f) ACBUCO)

. The sets R, S, and T are subsets of a universal set U. Which of the following

always holds?
(@) RNSCR by TCTnNy
(¢) RUSNT)CRN(SUT) (dy RUS = (RUSY

. Let U={u,v,w,x,y,21,2,3}, E={2,y,wz}, F={2,3,u,y,z}, and

G = {1, 2,3, w,y}. List the elements in each of the following sets.

(a) E (b)) FUG (¢) (EUFYNG

Let U={x,y,21,2,3}, A={y,z2},B={y, 1,2}, and C = {x,3}. List the
elements in each of the following sets.

(a) AUB (b) BNC (c) A

(d) AUB)NBUC) (e BNnAHYNC

Let U, 4, B, and C be defined by

U=ab,c, 1,2, 3}
A={a,b,c} B={a,2,3} C={l,23}

List the elements in each of the following sets.

(a) AUB (b)) BNC (¢) AUB)N(BUC)
(d) A (e) ANKB () AucC

Let X ={b,p,4,7} and Y ={a,p,4} be subsets of a universal set
U ={a,b,p,1,4,7}. Which of the following are not true statements?

(a) beXUY b) {p,d}=XnNY (¢ TeXnY

d leX'nY (e) 1eX' UY
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Let sets 4, B, C, and D be defined by

=

: x owns a GM car}

: x works for GM}

: x is the president of GM}
: x owns stock in GM}

= =

o, o, i,

=

TAQwx

Describe in words each of the following sets.
(@) ANB by BNA' (¢) (AUB)ND (d) CNA

Let X and Y be sets with @ € X and b € Y. Is it always true (yes or no) that
{a,b} CX U Y? That {a,b} CXNY?

Let 4 and B be subsets of a universal set U. It is always true that

(a) BNA'CA (by ANBCAUB

(¢) ANB CANBY (dy AAUB C(A4UB)Y

Let 4, B, C, and D be subsets of U with 4 C B and C C D. Is it always true that
(@) ANCCBND by ANC'CBNC

Let U = {2,4, 8, 16,32, 64}. Which of the following pairs of subsets 4, B, of the
universal set U, satisfy the condition: 4 N B" = {2, 16}

(a) A=1{2,8,16}, B = {4, 8, 64}

(b)y A=1{2,16,32}, B= {4, 8, 64}

(¢) A=1{2,16}, B = {4, 64}

Let U = {w, x, y, z}. Find examples of subsets 4 and B of U which satisfy the
stated condition.

(a) AUB=4 by ANB=4

(¢c) ANB' =4 (dy ANB =BnNA

Let U=1{1,2,3,4,x,y} be a universal set with subsets X = {1,2,3,x,y},
Y =1{2,4,y}, and Z = {2,x}. Use intersections, unions, and complements to
express each of the following sets in terms of X, ¥, and Z.

A=1{2,y} B={1,3,»} C={2,4,x,y}

With X, Y, Z, and U as in Exercise 19, use intersections, unions, and complements
to express the set {2, x, y} in terms of X, ¥, and Z.

List all subsets of the following sets.

(@) {x} (b) {x.y} () {x, 32}

Counting the empty set and the set itself, how many subsets does each of the
following sets contain?

(a) {x} () {x,y} (¢) {x.».z} (d) {w,x,y,z}

[s there a pattern? If so, what is the pattern? How many subsets does a set with
seven elements contain?

Let U = {a, b, c, 2,4, 6} be a universal set with subsets X, Y, and Z. Suppose
that YUY = {b,c,2,4,6},XNY =1{b,2,4},Y' NZ = {a,c},andZ’ = {a, c, 2}.
Find sets X, Y, and Z which satisfy these conditions.

If A= {r,s,t} and B = {s, ¢, u}: list the elements in 4 x A4, A x B, B x A, and
B x B.

Let A = {a, b, c}and B = {a, b, d}.

(a) List the elements in 4 x B.

(b) List the elements in (4 x B) N (B x A).
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26.

27.

28.

29.

30.

31.

32.

33.

34.
35.
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Let U ={l,2,3,4,5, 6} be a universal set with subsets X, Y, and Z. Suppose
that XUY ={1,2,4}, YNZ=1{4}, YUZ)={1,3,5}, XNY ={4}, and
7' ={1,2,3,5}. Find subsets X, Y, and Z.

Suppose 4 x B = {(a, 1), (b, 1), (a, 2), (b, 2), (a, 3), (b, 3)}. Find 4 and B.

LetA4 = {1,2,3}and B = {1, 2, 4}. Decide which of the following are correct.
(@) AxB)NBxA) =(AxA)N(BxB)

(b) (4 xB)={(2,1),(1,4),(1,2),(3,4), (3,2),(1,1), (2,2),(2,4), 3,1}

(¢) AxA)C((AxB)N(BxA))

(d) (AxA)C((AxB)UBxA))

Let U={-2,—-1,0,1,2} and S={—1,0,1}. Also, let 4= {(x,y):x€S,
y=x?}and B = {(x,y) : x € U,y = x?}. Is it true that

(a) ACB by ACS xS (¢c) BCS xS (d BCUxU
Let A, B, S, and U be the sets given in Exercise 29. Find 4 x 4 and B x B. Show
that 4 x A C B x B. Is it always true that if 4 C B, then 4 x A C B x B? Why or
why not?

Suppose 4 x B = {(1,a), (1,b), (1,¢), (2,a), (2,b), (2,¢)}. If C = {d, e}, then
CxA="

Let A=1{1,2,3,4,6,8} and B={5,6,7,8,9}. A set W is defined to be the
elements (pairs) of B x A for which at least one of the numbers is even. How many
elements are there in #/? How many elements are in 4 x W?

LetA = {x,y,z, 1} and B= {1, 2,4}. Ifaset U = (4 x B)U (B x A), how many
elements are there in U?

The set F' = {1, 2,3, 5, 8,13, 21, 34}. Describe the set F' by two different rules.
A set S has 6 elements, two of them being @ and b. How many subsets of S do not
include a or b? How many include a, but not »?

1.2 VENN DIAGRAMS AND PARTITIONS

In working with sets and the relations between sets, it is often helpful to
represent them with diagrams or pictures. A Venn diagram serves this purpose.
In a Venn diagram, a universal set U and its subsets are pictured by using
geometric shapes. By convention the set U is usually represented by a rectangle,
and the subsets of U are usually circles inside the rectangle. For example,
subset 4 of U is shown as the shaded region in Figure 1.1a, subset B is shown
in Figure 1.1b, and subset 4" is shown in Figure 1.1c.

FIGURE 1.1

D EDEaD

(a) A (b) B (c) A’
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(@) AU B (b) 4'N B
() ANB (d) A" U B
FIGURE 1.2

Subsets of U obtained by taking unions, intersections, and complements of
A or B or both can also be represented by Venn diagrams. For instance, 4 U B
is illustrated in Figure 1.2a, and 4 N B is illustrated in Figure 1.2¢.

Two useful set equalities are known as deMorgan’s laws.

For any subsets A and B of a universal set U

(AUB) = ANB
(ANB) = AUB

These equalities are illustrated in Figure 1.2. First, Figure 1.2a and b illustrate
that (4 U B)’ = A’ N B'. This relation can be read *‘The complement of a union
is the intersection of the complements,”” and it follows from the definitions of
union, intersection, and complement. Likewise, Figure 1.2¢ and d illustrate that
(AN B) =A"UB’, which can be read ‘“The complement of an intersection is
the union of the complements.”’

Other useful relations can be illustrated with Venn diagrams and verified
by using the definitions. Among these relations are the following distributive
laws:

ANBUC)=ANB)UMANC)
AUBNC)=AUB)NAUCO)

These relations hold for any three sets 4, B, and C. As we mentioned earlier,
the parentheses are essential, and the expressions would be ambiguous without
them.
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AN(BUC) AnByuc

FIGURE 1.3

Figure 1.3 illustrates that in general the sets 4 N (BU C) and (4 N B) U C are
different. [ |

Venn diagrams provide us with a geometric way to represent the decompo-
sition of a set into subsets. For example, in Figure 1.4 we illustrate how the
set 4 can be decomposed into subsets 4 N B (the football-shaped region) and
A N B’ (the crescent-shaped region). The notion of decomposition of a set into
subsets 1s extremely useful in the study of probability, and we consider the
situation in greater detail.

Let X ={2,4,6,8,10, 11, 12, 13, 14, 16, 18}.

Problem Find subsets X, X5, and X3 such that X; contains all even
numbers in X less than 10, X, contains all odd numbers in X', and X3 contains
all even numbers in X at least as large as 10.

Solution
X1 =1{2,4,6,8}, X, = {11, 13}, Xy =1{10,12,14,16,18} ™

Note that X = X UXo UXzand X NXo =0, X NX3 =0, Xo N X3y = 0.
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Let U = {Cairo, Copenhagen, Lima, Paris, Rio de Janeiro, Vienna}.
Problem Find subsets 4, £, and S of U such that
X : xisacity in Africa}

{
{x: xisacity in Europe}
{x: xisacity in South America}

SR N
([

and find the union of these three sets and the intersection of each pair of them.

Solution The sets 4, E, and S are the following: 4 = {Cairo}, £ =
{Copenhagen, Paris, Vienna}, and S = {Lima, Rio de Janeiro}. Then 4, F, and
S satisfy the following:

AUEUS =U ANE =90 ANS =0 ENS=9¢ (1.1)
|

In Example 1.9 sets 4 and E are disjoint. Likewise sets 4 and S are disjoint,
and sets £ and S are disjoint. Relationships like this occur frequently enough
for us to use a special expression to describe them.

The sets in a collection are said to be pairwise disjoint if every pair of sets in
the collection is disjoint.

Also in Example 1.9, the result of each classification assigns a city to 4, £, or
S; the union 4 U E U S is the set of all cities to be considered: AU LU S = U.
Subsets 4, £, and S of U which satisfy condition (1.1) form a partition of U.
In general, a partition is the result of cutting up a set into subsets; each subset
contains some elements of the set, and no two subsets can overlap. Formally,

A patrtition of a set U is a collection of honempty subsets of U which are
pairwise disjoint and whose union is the entire set U.

In the use of sets in finite mathematics, one of our main concerns is to count
the number of elements in certain sets. This is the primary topic of the next
section, and it will recur frequently in our work on probability. Partitions are
especially useful in helping us count the number of elements in a set. To show
how, we need some notation.
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Let A be a set with a finite number of elements. The number of elements in A
is denoted by n(A).

For instance, if X, 4, E, and S are the sets of Example 1.9, then n(X) = 6,
n(A) = 1, n(E) = 3, and n(S) = 2. In this case we have

6=nX)=n)+nE)+nS)=14+342

In fact, the definitions of a partition and the number of elements in a set lead
to the following useful principle:

Partition Principle
If a set X is partitioned into subsets Xi, Xs, ..., Xk, then

n(X) = n(X1) + n(X2) + - - - + n(Xk) (1.2)

If each of the subsets X1, Xa, ..., Xk has the same number of elements, then
Equation (1.2) can be simplified to

nX) = kn(X1) (1.9)

This version of (1.2) will be useful when X is a cartesian product.

A student is to plan a schedule which consists of one science course and
one humanities course. The student can choose a science course in astron-
omy (4), biology (B), or chemistry (C) and a humanities course in history (),
philosophy (P), religion (R), or theater (7).

Problem Determine the number of possible schedules.

Solution A schedule is a science course (4, B, or C) and a humanities
course (H, P, R, or T). Thus, a class schedule can be represented as an
ordered pair in which the first entry is a science course and the second entry
is a humanities course. The set of class schedules § is a cartesian product of
the set of science courses X = {4, B, C} and the set of humanities courses
Y = {H, P, R, T}. This cartesian product can be arranged in the array

4,0y A4,pP)  (A4,R) AT
B,H)  (B,P) (BR) (BT
<, («pr  (CR)  (CT)
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There are three rows in the array, one corresponding to each element in the set
{4, B, C}; and there are four columns in the array, one corresponding to each
element in the set {/, P, R, T'}. We can view the set S as partitioned into three
subsets, one corresponding to each row of the array. Each row of the array
contains four elements, and we conclude from (1.3) that

n(S) =n({4,B,C}) -n({H,P,R,T}) =3-4=12 u

The technique used in Example 1.10 for counting the number of elements in
a set which can be represented as the cartesian product of two sets is perfectly
general. We have the following rule.

If A and B are sets, then

nA x B) = n(A) - n(B) (1.4)

As we shall see in our next example, it is often necessary to consider cartesian
products of more than two sets. The definition is similar to the definition of the
cartesian product of two sets. For instance, the cartesian product £ x F X G
of three sets is the set of all ordered triples (e, f, g), with e € E, f € F, and
geG.

Suppose that the student of Example 1.10 also plans to take one language course,
either French (F) or German (G). Then the possible class schedules can be
represented by ordered triples (x, y, z) where x € {4, B, C}, y € {H, P, R, T},
and z € {F, G}. That is,

S={4,B,C} x {H,P,R, T} x {F, G}
The number of class schedules available to the student is n(S). Hence, as in

Example 1.10, n(S) can be obtained by taking the product of the numbers of
elements in each of the sets in the cartesian product:

n(S) =n({4,B,C}) -n({H,P,R, T}) - n({F,G}) =3-4-2=24 n

The result illustrated in Example 1.11 for three sets can be extended to an
arbitrary number of sets. The corresponding general result is as follows:

If X1, Xa, ..., Xy are sets, then

n(Xy x Xa x -+« x Xi) = n(X1) - n(X2) - n(Xg)
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Suppose X and X, form a partition of X, and Y}, ¥, form a partition of V.

Problem Ifn(X|) =4, n(X3) =5, n(Y,) = 3, and n(Y>) = 6, find n(X; x

X2 X Y).

Solution Sincen(Y) =n(Y,UY;) =9, wehaven(X| x X, xY)=4.5.

9 = 180. |

Exercises for Section 1.2

l.

Let A, B, and C be subsets of a set U. Draw a Venn diagram to illustrate each of
the following sets. In each case, shade the area corresponding to the designated
set.

(a) ANB (b) AUB
(¢) AUBUC d) AuBNncC
. In each case determine which of points v, w, x, y, and z in Figure 1.5 are contained

in the specified set.
(@) ANC by AUC
(c) AUMBNC) (d) (BNnCYy

. In each case determine which of points v, w, x, y, and z in Figure 1.5 are contained

in the specified set.

(@) AUC (by ANB
(¢c) AUB (d) BNnC
Using Figure 1.5, decide which of the following statements are true and which are
false.
(a) ze AU () yeBUMANC
(¢) yeBUO)NA d) ve BUC)N(MAUCO)
. Using Figure 1.5, decide which of the following statements are true and which are
false.
(a) {x,yjCcANBNC b) fvyy,z}cANC)UB
(¢) {w,x,y})CAUBNC (d) r,z,v}jCAuUB)NC
Describe the shaded areas in each Venn diagram of Figure 1.6, by using the set

operations of union, intersection, and complement and the sets 4, B, and C.

FIGURE 1.6

[

Vo V%
\/

(a) (b) (¢)
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(a) (b) (c)

FIGURE 1.7

7. Repeat Exercise 6, using Figure 1.7.

(a) xedANnC (b)y ze(ANBYUC (¢c) yebB
(d) xe (e) yed ucC

8. Decide which of the following are ‘‘always true”’’, ‘‘sometimes true’’, or ‘‘never
true’’.

(a) ANBUC)=ANBUUANC)
(b) AUBNC)=(AUB)N(AUC)
(¢) AUBHYNC'=AUC)NB
9. Determine which (if any) of the following set relations are true for all sets 4, B,
and C. (Hint: Use Venn diagrams.)

(@) ANB =(ANBY (b) ANB)YCA
FIGURE 1.8 (¢c) ANBCAUBY (d)y AnBCA
(e) (AUBYNC=UNB)YUC (f) ANB/UC = A UB)YUC
10. Which of the following is a true statement about the Venn diagram shown in
Figure 1.8?
‘ (a) xeANC (b) ze (ANBYUC (c) yebB

11. Let U be a universal set with disjoint subsets 4 and B; n(U) = 60, n(4) = 25, and
n(B) = 30. Find n((4 U B)").

12. LetA4 and B be disjoint subsets ina Universal set U with n(U) = 50,n(4 U B) = 35,
and n(B') = 25. Find n(4).

13. Let U be a universal set with disjoint subsets 4 and B; n(4) = 25, n(4’) = 40, and
n(B") = 30. Find n(4 U B).

14, Letn(X xY) =24, n(X xZ)=15,and n(Y x Z) =40. Find n(X x Y x 7).

15. Let X, A, B, and C be defined by

w" d) xeC (e yedUC

FIGURE 1.9
X ={a,b,c, 1,23}
A ={a,b,c} B=1{a, 2,3} C=1{1,2,3})
Which of the following pairs of subsets form a partition of X?
‘ (a) Aand B (b) Aand C
"’ (c) BandC (d) (AU B)and (CNB)
16. The shaded region in Figure 1.9 is properly described by which two of the
following:
(@) AUC)NB (b) AUC)NB UC)
() BNC)U (B NA) (d)y (AUB'UC)
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Let4 = {1, 2,3} and B = {v, w}. By listing the elements in each of the three sets,
show that 4 x {v} and 4 x {w} provide a partition of 4 x B.

A set P is partitioned into subsets Py, P, P3. The number of elements in P, is
5 times the number in P; and the number of elements in P3 is twice the number in
Py If n(P) = 40, find n(P,).

LetA ={1,7,3,a,b}and B = {3, c¢}. Determine

(a) n(4 x B) (b) n(Bx B xB)

A set U with n(U) = 8 is partitioned into 4 nonempty subsets 4, B, C, and D. If
all four sets are pairwise disjoint, then which of the following statements must be
true?

(a) n(4) + n(B) = n(C) + n(D) (b) n(4) + n(B) # n(C) + n(D)

(¢) n(4)+n(B) =2 (d) n(4) +n(B) +n(C) +n(D) # 8
A sociologist has a project which involves the collection of data. She is interested
in data which can be obtained by mail, by phone, or in person in any of the cities
of Atlanta, Boston, Chicago, Denver, or Elmira. She has funds for one project,
that is, to collect data in one way from one city. Determine the number of possible
ways to carry out the project.

Let 4, B, and C be subsets of a universal set U with 4 and B disjoint,
n(U) =110, n(A) = 35, n(B) = 44, n(AUBUC) = 96, and
n((AUB)N C) = 28. Find n(C).

Let 4, B, and C be distinct subsets of a universal set U with A CB C C. Also
suppose n(A4) = 3 and n(C) = 7. In how many different ways can you select B
such that n(B) = 4? Repeat this exercise with n(B) = 5.

Suppose n(4) = 5, n(B) = 10, and n(C) = 20. Which of the following sets has
more elements, 4 x B x Cor B x B x B?

A bag contains 6 green balls, 1 yellow ball, and 2 red balls. An experiment consists
of selecting three balls, one after another without replacement, and noting the color
of each ball selected. Suppose the set X of outcomes is partitioned into Xj, X2,
and X3 where X is the set of outcomes containing no red balls, X; is the set of
outcomes containing | red ball, and X3 is the set of outcomes containing 2 red
balls. Find n(X;), n(X>,), and n(X3).

Let A, B, and C be subsets of a universal set U with 4 and B disjoint, n(U) = 120,
n(Ad) =35 nB) =44, n(AUBUC) = 100, and n((4AU B) N C) = 28.

(a) Find n(C"). (b) Findn(CNA'NB).

A set X is partitioned into subsets X, X», and X3. The number of elements in X
is twice the number in X5, and the number in X3 is 5 times the number in X;. If
n(X) = 40, find n(X), n(X2), and n(X3).

A set X with n(X) =45 is partitioned into three subsets X, X5, and Xj. If
n(X2) =2n(X)) and n(X3) =3n(X2), find the number of elements in
subset X.

A set X with n(X) = 60 is partitioned into subsets X, ..., X¢. [f n(X)) = n(X2) =
n(X3), n(Xy) = n(Xs) = n(Xe) and n(X,) = 4n(Xy), find n(X,).

Let A and A, be a partition of 4, and let B) and B, be a partition of B. Is it true
that 4y x By, A x B,, A x By, and 4, x B, form a partition of 4 x B? Why or
why not?
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31. A set X with n(X) = 100 is partitioned into subsets 4, B, C, D, and E. Suppose
n(B) = 3n(A4), n(C) = 4n(A), n(E) = n(B) + n(C), and n(D) = n(E) — 10. Find
the number of elements in subset D.

32. A set X with n(X) = 120 is partitioned into five subsets X, Xz, X3, X4, and X5.
Ifn(Xs) = 5n(Xy), n(Xy) = 2n(X3), n(X3) = 2n(X}), and n(X3) = n(X3) + 8, find
n(Xs).

33. A universal set U has subsets 4, B, C, and D. It is known that n(U) = 100,
n(A) = n(B) =30, n(C) = n(D) = 80 and n(4A UBU CUD) = 80. Find n((4 U
BUC)ND,).

1.3 SIZES OF SETS

Example 1.13

We have seen that ‘‘the whole is equal to the sum of the parts’” when we are
dealing with subsets which form a partition of a set. This is summarized in
the partition principle, formula (1.2). What if the sets of interest do not form
a partition of another set? For instance, what if they are not disjoint? In such
cases Venn diagrams and the partition principle are still useful when applied
appropriately. We begin by analyzing a specific example in some detail. Our
goal is both a technique and a very useful formula.

A set U with nondisjoint subsets 4 and B has the following:
n(U) =10 n(d) =17 n(B) =6 n(ANB) =4
Problem Find n(4 U B).

Solution We use a Venn diagram with universal set U and subsets 4 and
B. Inside subset 4 N B we insert the number 4 to indicate that n(4 N B) = 4.
At this stage we have the diagram shown in Figure 1.10a. Next, since 4 has 7
elements and since 4 of them are in 4 N B, the portion of 4 not in 4 N B, that is,
AN B, must contain 7 — 4 = 3 elements. We insert a 3 in the set A N B’ to
indicate this. Likewise, since n(B) = 6, there must be 2 elements in 4’ N B.
The information n(A NB) =4, n(ANB") =3, and n(4' NB) =2 is shown
FIGURE 1.10

) GO

f
ANB ANB A'NB
(a) (b)
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in Figure 1.10b. Using this information, we see from the partition principle
[formula (1.2)] that n(A UB) =344+ 2 =09. [ |

It is helpful to examine this example more closely. Since n(4 U B) = 9 while
n(4) + n(B) = 6 + 7 = 13, it1s clear that in general we cannot obtain n(4 U B)
simply by adding n(4) and n(B). In fact, by examining Figure 1.10 we see that
adding n(4) and n(B) actually counts the elements in 4 N B twice. It follows
that to find n(4 U B), we must subtract n(4 N B) from n(A4) + n(B). In this way
each element in 4 U B will be counted exactly once. In Example 1.13 we have

nAUB)=0@4+4)+@+2)—4=9=n(d)+nB) —n4dNB)

Our argument holds for any two sets 4 and B. We have the useful formula

nAU B) = n(A) 4+ n(B) — n(AN B) (1.5)

The webmaster for a new web site asked 100 recent visitors to the site about
their impressions of the appearance and functionality of the home page for the
site. In particular, she asked the following two questions:

(a) Do you prefer the simple appearance now used or would you prefer to
have more information and options on the home page?

(b) Do you prefer a home page with no product ads or would you like to see
ads for special sales?

The results of the survey are that 60 prefer the current simple home page, 45
prefer not to have ads for sales on the home page, and 25 prefer both a simple
home page and not to have ads for sales.

Problem How many of the 100 responders to the survey prefer both a
more informative home page and ads for sale items?

Solution We use a Venn diagram with a universal set U consisting of
the 100 individuals who were surveyed by the webmaster. We also let W
denote the subset of 60 people who prefer a simple home page, and we let
C denote the subset of 45 people who prefer to not have sales ads on the
home page. From the data of the problem we know that n(/W N C) = 25.
Since n(W) = 60, and n(C) = 45, there must be 60 — 25 = 35 individuals in
W N and 45 — 25 = 20 individuals in W' N C. Thus, we have the diagram
and numbers shown in Figure 1.11.

From Figure 1.11 we see that n(W UC) =35+25+20=280 and
n((WUC)) =100 — 80 = 20. We are interested in the individuals who are
in W' (prefer more information on home page) and who are also in ('
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(prefer sales ads on the home page), and therefore are in W' N C’. Since
w'n C"= (WU C), the answer to the problem is

nW' N =n(WUC)) =20 u

In Example 1.14 we used the fact that the number of elements in (W U C)’
1s the difference between the number of elements in W U C and the number of
elements in the universal set U. This result holds for any subset 4 of U, and
we have the formula

n(Ad"y = n(U) — n(A4) (1.6)

The question raised in Example 1.14 can also be answered directly (without
using a Venn diagram) by applying formulas (1.5) and (1.6). Proceeding in this
way, we have

nWUC)=nW)+n(C)—n(WnNnC)
= 60+45—25
= 80

and therefore,

n[(WUC)]=n(U)—n(WUC)
= 100 — 80
=20

Nevertheless, in general, it is best to draw the Venn diagram. The diagram is
a useful aid in organizing the information of the problem, and it helps us to
spot mistakes which may result from using the formulas incorrectly. Also, the
logic followed in using a Venn diagram is the same when there are three or
more subsets of interest as when there are only two. This is illustrated in the
following example.

The GetFitFast Company requires each of its employees to pass a yearly phys-
ical examination. The results of the most recent examination of 50 employees
were that 30 employees were overweight, 25 had high blood pressure, and
20 had a high cholesterol count. Moreover, 15 of the overweight employees
also had high blood pressure, and 10 of those with a high cholesterol count
were also overweight. Of the 25 with high blood pressure, there were 12 who
also had a high cholesterol count. Finally, there were 5 employees who had
all three of these undesirable conditions. When the reports reached the desk of
the president, Jox Chinup, he asked, ‘‘Don’t we have any completely healthy
employees around here?”’



